

Continuing Collaborative Concept Formulation (C3F):

A Proposal to Improve the Ship System RD&A Process and to Re-Invigorate Naval Engineering

> Otto Jons, CSC Steven Wynn, NAVSEA

Background

- (a) ONR/NAVSEA Ship Design Process Workshop:
 - Track C Objectives: "Provide recommendations for a future requirements development process and ship design process" (Williamsburg, May 2008)
- (b) CNO ADM Roughead: Directs Changes to the Process and Organization for Developing New Concepts
- (c) SECDEF Initiatives:
 - (1) Statement: "Initiate material and non-material solutions development in parallel with formal communication of the requirement."
 - (2) "Adaptive Planning" Roadmap
- (d) Personal Observations / Lessons from Past Acquisition Reforms extending over 40 Years
 - = "Are we missing something fundamental??"

Outline

- 1. Concept Formulation (CF) Today
- 2. Why Continuing CF
- 3. Why Collaborative CF
- 4. Summary

Concept Formulation Today:

Step 1. Develop Requirements / Identify Capability Gap

Step 2. Develop the System Meeting those Requirements

Scenarios, Threats *Capability Gap (JCIDS): Mission Effectiveness Operational Need -The inability to achieve a desired **Analyses** effect under specified conditions Alternative through combinations of means Op's Concepts and ways to perform a set of tasks. ("Ways") Selected Requirements / Capability Gap* A Solid States **Design Tools Alternative Technology Base** Cost Information -Systems Concepts "Means"

System Concept

Ways and **Means**: Developed Sequentially = Not Collaboratively

Concept Development - Today

1. Since Not Collaborative:

Requirements are finalized before the System Concept is fully defined:

- Without a System Definition, i.e., a "Means" Solution:
- No Valid Cost Estimate for New, Advanced Systems,
 - No True "Quality Quantity" Trade-Off
 - No Meaningful "Ways & Means" Trade-Off

2. Not: Continuous:

Design Teams are disbanded

- once Design is completed
- and/or responsibility is transferred to a Contractor

Knowledge & Readiness

People retain their qualification,
 i.e., their knowledge, only by
 <u>continuing practice</u> of their trade;
 = especially important in Complex Naval Ship
 Design involving extensive knowledge sharing.

- There cannot be effective workforce development or <u>readiness</u> without continuing practice!
- Similarly: Tools even if Validated still Require <u>People Trained</u> in Using Them!

Why Continuing CF?

- 1. Continuing CF results in mature System Concepts, ready for Refinement and Acquisition;
- 2. This is achieved by Design Teams, <u>continually practicing</u> their trade, i.e. attaining a high degree of <u>Proficiency</u> & <u>Readiness</u>.
- 3. Systems can be developed with accurate, real-time awareness of <u>Cost Consequences</u>.
- 4. There are continuous opportunities to
 - Incorporate <u>Lessons Learned</u> from past designs
 - Transition new <u>S & T results</u> and <u>innovative</u> operational concepts

Finally: It can drastically reduce a Multi-Year Process:

Collaborative Concept Formulation

The Components: Applied to:

Goal: Aligning Individual Ship Requirements with Fleet Needs

By Optimally Matching

Fleet / Operational Concepts and (New) Ship System Performance

(Ways) ← (Means)

Collaborative Concept Formulation (How)

Naval Systems – A Special Case

Transportation Systems

Navy Missions

System of Systems **Natural Environments**

Naval Ships:

Hybrid Engineered Systems

Warfare Systems

Complexity & Adaptation: Complex Adaptive Systems (CAS)

Mission - / Warfare Systems

Hull/Platform: A Transportation System

From Systems to Effectiveness

Mission - / Warfare Systems

Hull/Platform: A Transportation System

Effectiveness in Transportation

Effectiveness in Warfare

Shuttle Ship:

$$E = \frac{P \times D}{T_L + D / V + T_U}$$

Where:

- •Payload (P)
- Distance (D)
- Time (T) to Load / Unload
- Time to Transit (= D/V)

System (Means) Performance
Directly Impacts Effectiveness

System Performance is only <u>one of the seven</u>
Parameters with Countless Variables

Optimizing Effectiveness in Warfare <u>Mandates</u> Exploration of the "Ways & Means" Trade-Space

Note: Dominance in One Domain Forces the Adversary into Asymmetries

= Warfare: The Ultimate Complex Adaptive System (CAS)

Why Collaborative CF?

- 1. Collaborative CF gives Customer/Operators continuing Feedback on
 - the Impact of Requirements on both Capability and Cost, and
 - Evolving Opportunities for Advancing Technology
- 2. It gives the Designer Feedback on the Impact of Performance on Capability
- 3. It enables Quicker Adaptation to Changing Needs
- 4. Most importantly: Collaborative Concept Development
 - > Opens the "Ways & Means" Trade-Space and
 - > Enables Optimization of Effectiveness,
 - rather than Optimization of Means for given Ways

C3F Vision

Industry	DARPA	ONR	SPAWAR	NAVAI R	NAVSEA/ NSWC / NUWC	SSG	NWDC	OPNAV	ONI	MCCDC	JCS
Platform and systems	S&T	S&T	Battleforce C ⁴ I	Aviation Concepts	Ship Concept Design/R&D	Future Capabilities	Fleet, CONOPS,	Strategies Fleet Arch	Threat INTEL	USMC Strategies	Joint Strategies

- Modeling & Simulation
- Visualization Tools

- Virtual Collaboration
 Environment
- Regular Reporting
 Cadence

Ship Concept Development Centers

Concept Formulation

Continuing
Concept
Formulation

Fitting Into the Acquisition System

Continuous Collaborative Concept Formulation (C3F)

Deciding what systems to acquire, and how they will operate...

i.e., Defining the Means Solution, <u>not</u> just Performance Requirements

Concept - to - Contract

- Defining solution to greater detail
- Deciding who should build it

Contract - to - Capability

- Developing final details
- Building
- Testing

<u>Benefits</u>

Operations Concept Formulation ("<u>Ways</u>")

Capability Concepts

Material Concept Formulation ("<u>Means</u>")

Achieve: - Designer Competency and Proficiency

- Requirement Elucidation vs. Imposition

Making C3F Happen

- 1. Socialize the Concept
 - A. Briefing Road Show
 - B. Ship Design Process Improvement Workshops
 - C. Professional Society Presentations
- 2. Formalize Collaborative Relationships
 - A. Leadership Directive
 - B. Memorandum of Understanding
- 3. Implement the Concept
 - A. Align Resources
 - B. Enable Continuity
 - C. Establish Training

Questions

Design: - The Traditional View

1. Operational Requirements Drive System Design

This View does not Address very Important Interactions

Interactions: - Largely Overlooked

I. Requirement Generation / System Design

II. Work Force Development / Design Resource Development

Proposed Solution:

Collaborative Concept Formulation

Continuing
Concept
Formulation

Capability ("Ways & Means") Trade Space

New Concepts:

Knowledge Currency / Resource Readiness

Continuing Collaborative Concept Formulation (C3F)

Workshop Planning

Formulation

Formulation

Requirement Generation / Concept Formulation

Ship /System Design

Workshop C3F-A: Collaborative CF

Retaining Design Resource Readiness

Work Force Development

Design Resource Development

Workshop C3F-A:

Interoperability & IDE

Processes &

Methodologies

Collaborative CF

Tools

Information &

"Knowledge"

"Effectiveness" in Warfare

> Means

= <u>Material</u> – (Ships, Weapons) & <u>Human</u> – (Personnel, Training)

Total <u>System Performance</u>

> Ways

= Strategies, Tactics, Doctrine, Concepts of Operation

> Capability

= The ability to achieve a desired <u>effect</u> under specified standards and <u>environmental</u> conditions through <u>combinations</u> of <u>Means</u> and <u>Ways</u>

(Another important factor, Will, is not addressed herein)

> Effectiveness:

The Keys:

- 1. A Favorable W/M/W/E Imbalance @ the Point-of-Contact
- 2. The Nature and Speed of Adaptation (OODA)

(1) Concept Development Centers of Excellence

(2) Advanced M&S and Visualization for Collaboration and Virtual Co-Location

2. Virtual Environment Systems Simulation Laboratory (VESSL)

VESSL will consist of:

- 1. internetted simulations that represent activities at a high level of realism.
- 2. created by a confederation of computers
- 3. connected by local and wide area networks, secure, if warranted
- 4. augmented by realistic special effects and physics-based behavior

Current Fleet and <u>Virtual Prototypes</u> of New Designs:

= Created in VESSL & Evaluated by Operators during Design

Naval Ships and Systems

 Naval Ship Platform may <u>carry</u> Warfare Systems and/or Hybrids (to Varying Degrees)

- <u>Decouple</u> Payload & Platform:
 - = Easily done for Embarked Systems
 - = For Installed Systems: Use Modularity & OSA

Ship Design Tool Roadmap

DRAFT

Ser 05D / xxx 22 April 2008

Future Concepts and Surface Ship Design

SHIP DESIGN TOOLS ROADMAP

PREDECISIONAL

PREDECISIONAL: FOR OFFICIAL USE ONLY

Outline

- 1 Introduction / Background
- 2 The Role of Design Tools in the Ship Life Cycle
- 3 Ship Design Tools Life Cycle
- 4 Ship Design Tools Management
- 5 Ship Systems Engineering
- 6 Design Tools Characterization
- 7 Design Process Capability Measurement
- 8 Ship Program Demand for Tools
- 9 Design Tool Needs
- 10 Investment Priorities
- 11 Conclusions and Recommendations
- 12 Bibliography

Appendix A: Tool Function Definitions

Appendix B: Tool Data Exchange Definitions

Appendix C: Tool Descriptions

Appendix D: Design Tool Models

Appendix E: Design Process Models

Appendix F: Design Tool Interoperability with Standards

Appendix G: Design Tool Integration with LEAPS

Appendix H: Verification, Validation, and Accreditation

Appendix I: Ship Design and Analysis Tool Goals